The LORD Sensing family of high-performance, industrial-grade inertial sensors provides a wide range of triaxial inertial measurements and computed attitude and navigation solutions.

The 3DM-CX5-45 all-in-one navigation solution features a high-performance, integrated multi- constellation GNSS receiver utilizing the GPS, GLONASS, BeiDou, and Galileo satellite constellations. Sensor measurements are fully calibrated, temperature-compensated, and mathematically- aligned to an orthogonal coordinate system for highly accurate outputs. The auto- adaptive estimation filter algorithm produces highly accurate computed outputs under dynamic conditions. Compensation options include automatic compensation for magnetic anomalies, gyro and accelerometer noise, and noise effects. The computed outputs include pitch, roll, yaw, heading, position, velocity, and GNSS outputs- making it a complete GNSS/INS (GNSS Aided Inertial Navigation System) solution. The use of Micro- Electro- Mechanical System (MEMS) technology provides a highly accurate, small, light- weight device.

Datasheet
Large Quantity & OEM Orders

Best in Class Performance

  • Fully calibrated, temperature-compensated, and mathematically-aligned to an orthogonal coordinate system for highly accurate outputs
  • High-performance, low-drift gyros with noise density of 0.005°/sec/√Hz and VRE of 0.001°/s/g2RMS
  • Accelerometer noise as low as 25 ug/√Hz
  • High-performance integrated multi-constellation GNSS receiver and advanced MEMS sensor technology provide direct inertial measurements, outputs in a small package
  • Triaxial accelerometer, gyroscope, magnetometer, temperature sensors, and a pressure altimeter achieve the optimal combination of measurement qualities
  • Dual on-board processors run a new Auto-Adaptive Extended Kalman Filter (EKF) for outstanding dynamic position, velocity, and attitude estimates

Ease of Use

  • Automatic magnetometer calibration and anomaly rejection eliminates the need for field calibration
  • Automatically compensates for vehicle noise and vibration
  • Easy integration via comprehensive and fully backwardscompatible communication protocol

Cost Effective

  • Out-of-the box solution reduces development time
  • Volume discounts
  • GNSS-aided navigation system
  • Platform stabilization, artificial horizon
  • Satellite dish, radar, and antenna pointing

Specifications

General

Integrated sensors

Triaxial accelerometer, triaxial gyroscope, triaxial magnetometer, pressure altimeter, temperature sensors, and GNSS receiver

Data outputs

Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, magnetic field , ambient pressure, Delta-theta, Delta-velocity

 

Computed outputs
Extended Kalman Filter (EKF): filter status, GNSS timestamp, LLH position, NED velocity, attitude estimates (in Euler angles, quaternion,orientation matrix) , linear and compensated acceleration , bias compensated angular rate, pressure altitude, gyroscope and accelerometer bias, scale factors and uncertainties, gravity and magnetic models, and more.

Complementary Filter (CF): attitude estimates (in Euler angles, quaternion, orientation matrix) stabilized, north and up vectors,GNSS correlation timestamp

 

Global Positioning System outputs (GPS): Global Navigation Satellite System outputs (GNSS): LLH position, ECEF position and velocity, NED velocity, UTC time, GNSS time, SV.GNSS protocol access mode available.

 

Inertial Measurement Unit (IMU) Sensor Outputs

 

Accelerometer

Gyroscope

Magnetometer

Measurement range

±8 g (standard)
±2 g, ±4 g, ±20 g, ±40 g (optional)

±300°/sec (standard)

±75, ±150,

±900 (optional)

±2.5 Gauss

Non-linearity

±0.02 % fs

±0.02% fs

±0.3% fs

Resolution

<0.1 mg

<0.003°/sec

--

Bias instability

±0.04 mg

8°/hr

--

Initial bias error

±0.002 g

±0.04°/sec

±0.003 Gauss

Scale factor stability

0.03%

±0.05%

±0.1%

Noise density

25 µg/√Hz (2 g)

0.005°/sec/√Hz (300°/sec)

100 µGauss/√Hz

Alignment error

±0.05°

±0.08°

±0.05°

Bandwidth

225 Hz

250 Hz

-

Offset error over
temperature

0.06% (typ)

0.04% (typ)

--

Gain error over temperature

0.03% (typ)

0.03% (typ)

--

Vibration induced noise

--

0.072°/s RMS/g RMS

--

Vibration rectification error (VRE)

--

0.001°/s/g2 RMS

--

IMU filtering

Digital sigma-delta wide band anti-aliasing filter to digital averaging filter (user adjustable) scaled into physical units.

Sampling rate

1 kHz

4 kHz

50 Hz

IMU data output rate

1 Hz to 500 Hz (standard mode) , 1 Hz to 1000 Hz (sensor direct mode)

Pressure Altimeter

Range

-1800 m to 10,000 m

Resolution

< 0.1 m

Noise density

0.01 hPa RMS

Sampling rate

25 Hz

Computed Outputs

Position accuracy

±2 m RMS horizontal, ± 5 m RMS vertical (typ)

Velocity accuracy

±0.1 m/s RMS (typ)

Attitude accuracy

EKF outputs: ±0.25° RMS roll and pitch, ±0.8° RMS heading (typ)

CF outputs: ±0.5° roll, pitch, and heading (static, typ), ±2.0° roll, pitch, (dynamic, typ)

Attitude heading range

360° about all axes

Attitude resolution

< 0.01°

Attitude repeatability

0.2° (typ)

Calculation update rate

500 Hz

Computed data output rate

EKF outputs: 1 Hz to 500 Hz
CF outputs: 1 Hz to 500 Hz

Global Navigation Satellite System (GNSS) Outputs

Receiver type

72-channel GPS/QZSS L1 C/A, GLONASS L10F, BeiDou B1, SBAS L1 C/A:WAAS, EGNOS, MSAS Galileo E1B/C

GNSS data output rate

1 Hz to 4 Hz

Time-to-first-fix

Cold start: 27 second, reacquisition: 1 second, hot start: <1 second

Sensitivity

Tracking: -164 dBm, cold start: -147 dBm, hot start: -156 dBm

Velocity accuracy

0.1 m/sec

Heading accuracy

0.5°

Horizontal position accuracy

GNSS: 2.5 m CEP

SBAS: 2.0 m CEP

Time pulse signal accuracy

30 nsec RMS
< 60 nsec 99%

Acceleration limit

≤ 4 g

Altitude limit

50,000 meters

Velocity limit

500 m /sec (972 knots)

Operating Parameters

Communication

USB 2.0 (full speed)
TTL serial (3.0 V dc, 9,600 bps to 921,600 bps, default 115,200)

Power source

+3.2 to 5.2 V dc

Power consumption

700 mW (typ), 800 mW (max)

500 mW (typ)

Operating temperature

-40 °C to +85 °C

Mechanical shock limit

500 g (calibration unaffected)
1000 g (bias may change), 5000 g (survivability)

MTBF

(TBD)

Physical Specifications

Dimensions

44.2 mm x 36.6 mm x 11 mm

Weight

20 grams

Enclosure material

Aluminum

Regulatory compliance

ROHS, CE

Integration

Connectors

Data/power output: micro-DB9Samtec FTSH Series

(FTSH-105-01-F-D-K) GNSS  antenna: MMCX type

Software

MIP Monitor, MIP Hard and Soft Iron Calibration, Windows XP/Vista/7/8/10 compatible

Compatibility

Protocol compatibility across 3DM®-GX3, GX4, RQ1, GQ4, GX5 and CV5 product families

Software development kit (SDK)

MIP data communications protocol with sample code available (OS and platform independent)

General Documentation

Technical Notes

General Documentation

Please fill out the following form.
If you would like to speak to someone directly call 802-862-6629.