MicroStrain by HBK Technical Note

V-Link-200[®] Wireless Voltage Node

Connecting and calibrating a 4 to 20 mA sensor on one of the four differential channels

This example is using a 0 - 100 PSI, 4 to 20 mA sensor

Connections

•

- Place qty 2 100 K Ω resistors between SP+, S#- and GND as shown
 - Place sense resistor, 7.8 Ω max (156mV ÷ 20 mA, between S#+ and S#-
 - $\circ~$ Measure the sense resistor prior to installing with ohm meter to get precise value $\circ~$ 5.1 Ω for this example
- Connect 4 to 20 mA sensor to power supply and sense resistor as shown

Calibration

DO NOT POWER THE 4 to 20 mA SENSOR AT THIS TIME

Select the Configure tile

Select the ±156 mV range

input kunge	Channel(s)	Input Range	
	Differential (ch1)	±156 mV	Ŧ
	Differential (ch2)	±156 mV	Ŧ
	Differential (ch3)	±156 mV	Ŧ
	Differential (ch4)	±156 mV	*
	Single-ended (ch5)	0 to 5.12 V	Ŧ

Short together S#+ and S#-Verify Mid for the Target and click the Auto Balance button

Hardware Offset			
	Channel(s)	Offset	Balance Target
	Differential (ch1)	626	Mid (50%) 🔻 Auto Balance
		Auto balance complete (achieved: 49.97%)	

The achieved balance should be very close to 50%

Select the Calibration tab

Select the channels Cal Tools button and click on Manual

Hardware		Calibration
Linear Calibration Channel(s)	0	Unit
Differential (ch1)	 Cal Tools 	Raw Millivolts
Differential (ch2)	Strain	None
Differential (ch3)	mV/V	None
	Manual	
Differential (ch4)	Tare	None
Single-ended (ch5)	👻 Cal Tools 👆	Raw Volts

<u>To output mV</u>

Selecting Raw Millivolts should populate the Slope and offset as shown, if not populate the slope and offset using the table below. Click Accept Calibration button

Manual Calibration

Ν	lode: 63784, C	hannel: ch1 - Differential (ch1)	
	output	= (slope x bits) + offset	
	Unit	Raw Millivolts	•
	Slope	0.001220703125	mV/bit
	Offset	-156.25	mV
Effect	ive Range:	-156.25 to 163.75 mV	

Accept Calibration	Canc
--------------------	------

Input Range	[Gain]	Slope	Offset
±156 mV	[16]	0.0012207031	-156.25
±78.1 mV	[32]	0.0006103516	-78.13
±39.0 mV	[64]	0.0003051758	-39.06
±19.5 mV	[128]	0.0001525879	-19.53
±9.76 mV	[256]	0.0000762939	-9.77
±4.88 mV	[512]	0.0000381470	-4.88
±2.44 mV	[1024]	0.0000190735	-2.44
±1.22 mV	[2048]	0.0000095367	-1.22

Table 5 - Raw Voltage Output

Click the Apply Configuration button

With short still in place

go back to the Cal Tools and select Tare

Click the sample now button several times, while observing the Current Measurement.

Current Measurement:	-0.1038 mV	∂ Sample Now	
Current Load:	0	Raw Millivolts	•

Once a steady number is seen there, click the Apply Offset button

Remove the short

Close the calibration and configuration screens

Power up the 4 to mA sensor and collect data. With no load on the 4 to 20 mA sensor there should be ~20.4 mV (4 mA x sense resistor Ω)

If able, apply the max load to the 4 to 20 mA sensor and observe if the max mV is ~102 mV (20 mA x sense resistor Ω)

Note: If the signal is negative and positive was expected, either swap the leads on S#+ and S#- and recalibrate, or swap the signs on the slope and offsets.

<u>To output mA</u>

Take the Slope and Offset values from the table above and ÷ the value by the measured sense resistor

Slope 0.0012207031 ÷ 5.1 = 0.0002393535 Offset -156.25 ÷ 5.1 = 30.6372549019

In the Manuel Cal tool, select Milliampere and enter the calculated mA slope and offset

Μ	anual Calibration		×
Node: 63784, 0	Channel: ch1 - Differential (ch	1)	
output	t = (slope x bits) + offset		
Unit	Milliampere	▼	
Slope	0.0002393535	mA/bit	
Offset	-30.6372549019	mA	
Effective Range:	-30.6373 to 32.1078 mA		
		Accept Calibration	Cancel

Accept Calibration and Apply Configuration

Power up the 4 to 20 mA sensor with no load, output should be 4 mA

Go to the Tare tool

Enter Current Load of 4 Milliampere Click the Sample Now button several times to get a steady Current Measurement value Click Apply Offset

	Tare Offset			×
Node: (53784, Channel: ch1 - Diffe	erential (ch1)		
Original Calibrat	tion: mA = (-2.3935e-4	1 x bits) + 30.6373		
Current Measurem	ent: 3.9522 mA	2 Sample Now		
Current L	pad: 4	Milliampere	v	
Applied Calibration:	mA = (-2.3935e-4 x bits)	+ 30.6373		
Offset:	30.685 mA (+4.7800e-2)		🖺 Apply Offset	
Effective Pange:	30.685 to -32.06 mA		D Revert	

Close Tare and Configuration screen

Set the node sampling and verify that with no load on the 4 to 20 mA sensor that the signal is ~4 mA

If able, apply the max load to the 4 to 20 mA sensor and observe if the max mA is ${\sim}20$ mA

To output engineering unit

Calculate the engineering unit slope

			min	max		
Slope			0	100	psi	
0.001220703	mV/Bit		20.4	102	mV	
				100	PSI range	
				81.6	mV range	
	mV R	ange ÷ PSI F	Range	1.22549	PSI/mV	
	PS	SI/mV x mV/	Bit	0.001496	PSI/bit	

Manual enter the Unit and slope, can leave the offset as 0 as the next step is to Tare

N	lanual Calibration		×
Node: 63784,	Channel: ch1 - Differential (ch1)		
outpu	it = (slope x bits) + offset		
Unit	Pound Per Square Inch	▼	
Slope	0.00149596	PSI/bit	
Offset	0	PSI	
Effective Range:	0 to 392.1569 PSI		
		Accept Calibration Can	cel

Accept Calibration and Apply Configuration

Go to the Tare screen

With no load on the 4 to 20 mA sensor

Leave the Current Load at 0

Click the Sample Now button several times to get a steady Current Measurement

Click the apply Offset button

	Tare Offset		×
Node: 63784	4, Channel: ch1 - Differe	ntial (ch1)	
Original Calibration:	PSI = (1.4960e-3 x b	its)+0	
Current Measurement:	166.6544 PSI	2 Sample Now	
Current Load:	0	Pound Per Square Inch 🔹	
Applied Calibration: PSI	= (1.4960e-3 x bits) + 0		
Offset: -166	5.6544 PSI (-166.6544)	🖺 Apply Offset	
Effective Range: -166	5.6544 to 225.5025 PSI	D Revert	
			Close

Close the Tare and Configuration screen

Collect data with no load on the 4 to 20 mA sensor, for this example should be ~0 PSI

If able, apply the max load to the 4 to 20 mA sensor and observe if the max engineering unit matches the sensor rating.

MicroStrain by HBK Hottinger Brüel & Kjær 459 Hurricane Lane Williston, VT 05495 • USA phone: +1.802.862.6629 email: microstrainsales@hbkworld.com microstrainsupport@hbkworld.com www.hbkworld.com