Product no longer stocked – limited availability
Contact for pricing and lead time--a minimum order quantity may apply



The 3DM-GX4 -25™ is a miniature industrial-grade attitude heading and reference system (AHRS) with integrated magnetometers, high noise immunity, and exceptional performance.

Product Highlights

  • High performance integrated MEMS sensor technologyprovide direct and computed AHRS outputs in a small package.
  • Triaxial accelerometer, gyroscope, magnetometer, temperature sensors, and a pressure altimeter achieve the best combination of measurement qualities.
  • Dual on-board processors run a sophisticated AdaptiveKalman Filter (AKF) for excellent static and dynamic attitude estimates and inertial measurements.
Datasheet Manual

Best in Class Performance

  • Fully calibrated, temperature compensated, and mathematically aligned to an orthogonal coordinate system for highly accurate outputs
  • Bias tracking, error estimation, threshold flags, and adaptive noise, magnetic, and gravitational field modeling allow for fine tuning to conditions in each application.
  • High performance, low drift gyros with noise density of 0.005°/sec/√Hz and VRE of 0.001°/s/g2RMS
  • Smallest and lightest industrial AHRS available

Ease of Use

  • User-defined sensor-to-vehicle frame transformation
  • Easy integration via comprehensive SDK
  • Common protocol with the 3DM-GX3® and 3DM-RQ1-45™ sensor families for easy migration

Cost Effective

  • Out-of-the box solution reduces development time.
  • Volume discounts


Integrated sensors

Triaxial accelerometer, triaxial gyroscope, triaxial magnetometer, temperature sensors, and pressure altimeter

Data outputs

Inertial Measurement Unit (IMU) outputs: acceleration, angular rate, magnetic field , ambient pressure, deltaTheta, deltaVelocity

Computed outputs

Adaptive Kalman Filter (AKF): filter status, GPS timestamp, attitude estimates (in Euler angles, quaternion, orientation matrix), bias compensated angular rate, pressure altitude, gravity-free linear acceleration, attitude uncertainties, gyroscope and accelerometer bias, scale factors and uncertainties, gravity and magnetic models, and more. Complementary Filter (CF): attitude estimates (in Euler angles, quaternion, orientation matrix), stabilized north and gravity vectors, GPS correlation timestamp

Inertial Measurement Unit (IMU) Sensor Outputs





Measurement range

±5 g (standard)

±16 g (option)



±75, ±150, ±900°/sec (options)

±2.5 Gauss


±0.03 % fs

±0.03 % fs

±0.4 % fs


<0.1 mg



Bias instability

±0.04 mg



Initial bias error

±0.002 g


±0.003 Gauss

Scale factor stability

±0.05 %

±0.05 %

±0.1 %

Noise density

100 µg/Hz




Alignment error




Adjustable bandwidth

225 Hz (max)

250 Hz (max)


Offset error over temperature

0.06% (typ)

0.05% (typ)


Gain error over temperature

0.05% (typ)

0.05% (typ)


Scale factor non-linearity (@ 25° C)

0.02% (typ)

0.06% (max)

0.02% (typ)

0.06% (max)

±0.0015 Gauss

Vibration induced noise





Vibration rectification error (VRE)





IMU filtering

4 stage filtering: analog bandwidth filter to digital sigma- delta wide band anti-aliasing filter to (user adjustable) digital averaging filter sampled at 4 kHz and scaled into physical units; coning and sculling integrals computed at 1 kHz

Sampling rate

4 kHz

4 kHz

50 Hz

IMU data output rate

1 Hz to 1000 Hz

Pressure Altimeter


-1800 m to 10,000 m


< 0.1 m

Noise density

0.01 hPa RMS

Sampling rate

25 Hz

Computed Outputs

Attitude accuracy

AKF outputs: ±0.25° RMS roll & pitch, ±0.8° RMS

heading (typ)

CF outputs: ±0.5° roll, pitch, and heading (static, typ), ±2.0° roll, pitch, and heading (dynamic, typ)

Attitude heading range

360° about all axes

Attitude resolution

< 0.01°

Attitude repeatability

0.3° (typ)

Calculation update rate

500 Hz

Computed data output rate

AKF outputs: 1 Hz to 500 Hz

CF outputs: 1 Hz to 1000 Hz

Operating Parameters


USB 2.0 (full speed) RS232 (9,600 bps to 921,600 bps, default 115,200)

Power source

+ 3.2 to + 36 V dc

Power consumption

100 mA (typ),120 mA (max) with Vpri = 3.2 V dc to

5.5 V dc

550 mW (typ), 800 mW (max) with Vaux = 5.2 V dc to 36 V dc

Operating temperature

-40 °C to +85 °C

Mechanical shock limit

500 g (calibration unaffected)

1000 g (bias may change)

5000 g (survivability)


1.2 million hours (Telcordia method I, GL/35C)

0.45 million hours (Telcordia method I, GM/35C)

Physical Specifications


36.0 mm x 24.4 mm x 11.1 mm (excluding mounting tabs), 36.6 mm (width across tabs)


16.5 grams

Enclosure material


Regulatory compliance




Data/power output: micro-DB9


MIPMonitor, MIPHard and Soft Iron

Calibration, Windows XP/Vista/7/8 compatible


Protocol compatibility with 3DM-GX3® and 3DM- RQ1-45sensor families.

Software development kit (SDK)

MIPdata communications protocol with sample code available (OS and computing platform independent)



Using MIP Monitor software, to reset the device to the factory defaults:

  • Establish communication as normal with the sensor.
  • Click Settings.
  • Click Load Default Settings and a message box pops up.
  • Click OK and the message box disappears.
  • Click Settings again.
  • Click Save Current Settings and a message box pops up.
  • Click OK and the message box disappears.

This process does not erase any hard and soft iron calibration that may be on the device.

The Hard and Soft Iron Cal software we provide must be used to do that.


Not what you're looking for? Visit our FAQ page or contact our Sales team.